
 

SummerSim-SCSC, July 22-24 2019, Berlin, Germany; ©2019 Society for Modeling & Simulation International (SCS) 

 

 

Applying Modelling and Simulation for Development of Embedded Systems 
 

Gabriel Wainer                 

Joseph Boi-Ukeme 

 

Department of Systems and Computer Engineering 

Carleton University 

1125 Colonel By Drive 

Ottawa, ON, Canada 

{gwainer, josephboiukeme}@sce.carleton.ca 

ABSTRACT 

Formal methods and tools help in building embedded systems with real-time constraints, but most 

existing methods are still hard to scale up. Instead, systems modeling and simulation (M&S) can improve 

the development task and provide higher quality. M&S is widely used for the early stages of projects; 

however, when the development tasks switch towards the target environment, early models are often 

abandoned. In order to deal with these issues, we introduced a methodology based on discrete-event 

systems specifications, which combines the advantages of a practical approach with the rigor of a formal 

method, in which one consistently use models throughout the development cycle.   

 

Keywords: Embedded Systems, Model Driven Development, DEVS. 

1 INTRODUCTION 

Formal methods for embedded systems development use mathematical notations to define the system’s 

requirements, allowing proving system properties (liveness, timeliness, etc.). These techniques have had 

success, but they are still difficult to apply and do not scale up well. Instead, construction of system 

models and their analysis through simulation (M&S) reduces cost and risk, allowing exploring changes 

and testing of dynamic conditions in a risk-free environment. This is a useful approach, moreover 

considering that testing under actual operating conditions may be impractical and in some cases 

impossible. Our research focuses on how to bridge formal methods and formal M&S for to analyze RTS 

and for studying their interaction with the physical environment, while reusing the original models. The 

methodology, called DEMES (for Discrete-Event Modeling of Embedded Systems), is based on DEVS, 

as it provides an abstract and intuitive way of modeling, independent of underlying simulators, hardware, 

and middleware (Zeigler et al. 2000). DEMES combines the advantages of a practical approach with the 

rigor of a formal method, in which one consistently uses the same models throughout the development 

cycle, and it has been presented in (Niyonkuru and Wainer 2015; Niyonkuru and Wainer 2016; Saadawi 

and Wainer 2009; Saadawi and Wainer 2010). DEMES enables the incremental construction of such 

embedded applications using a discrete-event architecture for both simulation and the target. The use of 

DEVS for DEMES offers the following advantages:  

- Reliability: logical and timing correctness rely on DEVS mathematical theory. 

- Model reuse: DEVS has well-defined concepts for coupling of components and hierarchical, modular 

model composition.  

- Modeling: many techniques used for embedded systems (e.g., SystemC, TA, State Charts, etc.) have 

been mapped into DEVS. We can use different methods while keeping independence at the level of the 



Wainer and Boi-Ukeme 

executive, using the most adequate technique on each part of system architecture and reusing existing 

expertise.  

- Hybrid modelling: the theory includes methods to define the environment under control using 

continuous modeling methods and approximations.  

In the following sections we discuss the DEMES methodology, related work and tool. We will introduce 

a tutorial case study based on a Railway control system, using DEMES for the development process 

owing to its unique advantages highlighted above. 

2 BACKGROUND 

DEMES uses M&S and formal methods as an alternative method for embedded software development. 

The application of M&S for real-time system design has gained popularity in recent years because 

construction of the system model and analysis by simulation enhances both the capabilities of the system 

and improves the quality of the final product while reducing cost and risks (Wainer 2015).  

DEVS is a timed event system specification for modeling and analyzing discrete event dynamic systems. A 

real system modeled using DEVS is composed of atomic and coupled models. DEVS models provide a 

basis for the design of event-based logic control. The event-based control paradigm is applied in advanced 

robotics and intelligent automation, showing how classical process control can be readily interfaced with 

rule-based symbolic reasoning systems (Zeigler 1989). 

By illustrating a methodology in which the plant, its actuators, and sensors are described by discrete event 

models developed within the event-based control paradigm, a model of the controller is employed to 

validate its design in a plant/actuator/sensor experimental frame. The same model configuration is then 

employed for actual control operation by connecting the simulation executive, suitably modified, to a 

programmable controller that interfaces to the real plant/actuator/sensor system. This methodology is 

supported by the real-time interpretation of the DEVS formalism. 

Several research applied DEVS to Real-Time systems, either by extension of the DEVS formalism (Hong 

et al. 1997, Sarjoughian and Gholami 2015) or by incorporating real-time functionalities in a DEVS 

environment (Yu and Wainer 2007, Niyonkuru and Wainer 2015).  Special case tools are proposed in the 

literature for Real-Time DEVS (RT-DEVS) model analysis and design (Furfaro and Nigro 2008).  

 

3 THE DEMES METHODOLOGY 

Figure 1 shows the architecture of DEMES. A designer starts (1) by modeling the System of Interest (a 

RTS and its environment) using formal specifications (for instance DEVS, Bond Graphs, etc.). These 

models subsequently transformed into TA and verified using model-checking tools (2). In parallel with 

this formal verification phase, we use the same models to test the components in a simulated DEVS 

environment (3). The physical environment can also be simulated (4) together with the RTS model under 

particular loads (5). These tested submodels can be deployed incrementally into the target platform (6). 

Most of the testing phase (7) can be done using simulation (with faster than RT performance), even if the 

hardware is not available, if there are risks, or practical issues. Design changes are done incrementally in 

a spiral cycle (8), providing a consistent set of apparati throughout the development cycle. The cycle ends 

with the RTS fully tested, and every model deployed in the target platform (9). 

https://ieeexplore.ieee.org/author/37313038500
https://ieeexplore.ieee.org/author/37273171200


Wainer and Boi-Ukeme 

 

Figure 1. DEMES: Discrete-Event Modeling of Embedded Systems 

The methodology rests on three pillars: model specification, analysis and execution based on DEVS 

theory. DEVS supports hierarchical and modular construction of models, which fits our needs (models at 

different levels of abstraction can be defined independently, and later integrated into a hierarchy). DEVS 

decouples model, experiments, and execution engines (allowing for portability and interoperability). The 

research used: 

- RT Model analysis: we proposed the transformation of DEVS graphs into TA. This involved studying 

formal transformation of DEVS Graphs into semantically equivalent TA models, while maintaining their 

original structure and behavior, including continuous components. To use model checking, we needed to 

define a suitable finite abstraction of the hybrid system that can be verified and hence reachability can be 

computed. We proposed a new technique to represent the continuous system in discrete format using 

DEVS (Wainer and Saadawi 2010). 

- RT Model execution: we built DEVS RT engines for the models above. In order to deploy 

components incrementally into varied hardware, we transform simulation models into executable models 

in the target, defining the mechanisms to map this runtime system into specialized hardware.  

- We defined new methods for integrating models of complex physical systems and RTS, based on 

Cell-DEVS model specification and QSS and Hybrid model specifications. 

- The models were integrated with parallel simulation engines. Although current experiments showed 

considerable speedups for simulating complex models, there is still open research on predictable 

performance to guarantee RT deadlines. 

E-CD++ (Niyonkuru and Wainer 2015) implements DEMES, and it provides a platform for models to 

be defined according to the DEVS formalism and implemented in RT. For deploying the models on 

hardware, the tool allows for the generation of binary files that can be interfaced with input/output devices 

through the ARM MBED Library. Following, we show a case study, showing the methodology and results 

(which is mature enough so that undergraduate students are able to use it to develop applications).  

 

3 CASE STUDY: A LIGHT RAIL CONTROLLER 

In this section we show how to use the DEMES methodology described above for the modeling and 

implementation of a prototype light rail controller. Light rails, are a form of urban rail transit using rolling 

stock similar to a tramway but operates at a higher capacity with an exclusive right-of-way. A few light 

rail networks tend to have characteristics like rapid transit or even commuter rail; some of these rapid 

transit-like systems are referred to as light metros. Light rail systems are found throughout the world and 



Wainer and Boi-Ukeme 

have become popular in recent years because of their low capital cost and increased reliability when 

compared with heavy rail systems (Thompson 2003). 

The key task of Railway is to transfer the passengers from one station to another. The stops of these 

stations are fixed and are controlled manually by a pilot. However, the issue with the current system is 

that it stops the Railway on every station even when there is no passenger boarding or disembarking from 

that station, which wastes a significant amount of travel time. In an attempt tackle this problem and make 

the Railway more efficient, we propose a stop control system in which the train would be stopped only 

when passengers need to board or get off from that stop. 

We built a prototype based on a robot shield using the Nucleo F411RE board mounted on a seed shield 

robot (with an ARM Cortex M4 processor and 512kB of flash memory). A sensor controller activates or 

stops the light sensor, receives the sensor readings, and sends messages to the motor controller, specifying 

whether the robot is on track, off track, or has reached the destination. The controller also receives on/off 

track and stop signals from the sensor, and it sends appropriate commands to the motors. The Nucleo 

Board F411RE shown on the left side of Figure 2 has an ARM Cortex M4 processor and 512kB of flash 

memory with an STM32 microcontroller. The seed shield bot shown on the right side of the Figure has 5 

Infra-Red reflectance sensors for line and edge following. In addition, the shield bot has two durable 160:1 

micro metal gear motors and six Grove expansion ports for easy attachment of more sensors and actuators. 

It has 1 user LED shared with Arduino and 1 user and 1 reset push button. The power switch on the seed is 

used to turn on/off the robot. The charging port is used to charge the robot. Left and right motors enable the 

movement of the corresponding wheels. Grove ports are the expansion ports, Line finder Potentiometer is 

used to increase or decrease the sensitivity and five sensors for line and edge following.  

           

Figure 2. Nucleo Board F411RE and Seed Shield 

Five Infrared sensors (S1, S2, S3, S4 and S5) were used as an input to the Railway. On receiving an input 

on any of the five sensors the train starts moving towards its requested destination. The sensors ports used 

are A0, A1, A2, A3, D4. The movement can also be controlled by digital push buttons. On pressing a 

push button, the train needs to start moving towards its requested station.  

 



Wainer and Boi-Ukeme 

       

Figure 3. Digital Push Button Connections       

  

3.1 DEVS MODEL DESCRIPTION  

The model is made up of a stop controller and a wheel controller. The stop controller is responsible for 

deciding when to halt the train depending on the type of input signal received. The wheels controller is 

responsible for the Railway by deciding the direction of the movement whether it should move forward or 

backward, and it also decides what speed, and to compute the distance between the current and next 

station. The controller checks for passengers travelling inside the train and the outside passengers, who 

are waiting at the different stations to board the train.  

 

Figure 4. Top Model Structure 

Figure 4 shows the top model, and two atomic components: Stop Controller and Wheel Controller. The 

Stop Controller model gives the output to the Wheel Controller model. Also, it receives a feedback from 

the Wheel controller model. The Wheel Controller model sends the output to the wheels according to the 

inputs received from the Stop Controller. Stop Controller model activates the sensors on receiving the 

start input on one of its ports. The atomic model receives the inputs from the sensors/ push buttons and 

gives the output to the atomic model Wheel controller. The stop controller atomic model is shown in 

Figure 4. 



Wainer and Boi-Ukeme 

         

Figure 5. Stop Controller Atomic Model and DEVS graph 

Figure 5 shows the structure of the Stop Controller Atomic model, and a DEVS Graph representing the 

sensor controller’s behavior. As discussed earlier, the DEVS graph can be transformed into a timed 

automaton and checked using TA model checking tools like UPPAAL. Then, we can use the same model 

to run a simulation using the CD++ software (Wainer 2009) and extensions. We illustrate the execution 

mechanism using trace logs collected during the execution of the railway in Figure 6. Once tested in 

simulation mode, the same models are deployed onto the device. 

 

DRIVER: INPUT MESSAGE  Time: 00:02:10:403:002 

 Port: start_in Value: 11  

 - advance_execution()::STController  

 - advance_execution()::IR_Sensor  

 model->external() model->advance(): 00:000:000  

 - collect_outputs()::STController  

 - advance_execution()::STController  

 - collect_outputs()::IR_Sensor   model->out()  

 - advance_execution()::IR_Sensor   model->internal() model->advance(): ...  

 - advance_execution()::mctrl 

 model->external() model->advance(): 00:000:000  

 - collect_outputs()::STController  

 - collect_outputs()::mctrl  model->out()  

DRIVER: OUTPUT MESSAGE  Time: 00:02:10:403:559 

 Port: motor Value: 0  

Figure 6. Simulated results 

We declare the pins used by the hardware, and link it using the MBED library to define the input controller 

models (Stop Controller, and Wheel Controller). 5 pins associated with the IR sensors are initialized as 

stop sensors, and the pins associated with the different grove ports are initialized as the push buttons’ 

inputs. We define the pins linked with the two motors to give these pins the output of the controller, also 

defined the pins to enable these motors first. After the initialization stage is completed, we need to define 

ports and drivers, in this implementation, we define port drivers and output drivers and instantiate the 

driver for a polling period. After the drivers have been defined and instantiated, the DEVS models are 

implemented, we implement the internal and external transition functions. Then the port definitions that 

connect the physical port drivers to the DEVS model are implemented after all the required ports have been 

instantiated. The top model, which defines the links between the control unit coupled model and the 

systems I/O port driver is created. 

 

A number of videos showing the result on the target platform are at http://www.youtube.com/arslab, as in 

Figure 7. 

http://www.youtube.com/arslab


Wainer and Boi-Ukeme 

The Train rests at station 1 until and unless an input through sensors or push buttons is given to it. When 

an input is provided to one of the infra-red sensors (A0, A1, A2, A3, D4), the train starts moving forward. 

Each sensor represents a station; therefore, the next destination is determined by input to a sensor. 

Similarly, there are five push buttons, each of which represents a station. When a button is clicked the 

train starts moving forward or backward according to the requested destination but would only change 

direction when it has reached the last station or the first station depending on the direction requested. The 

Train can be controlled by using a sensor or a button for both forward and backward movements. It can 

also be controlled by using sensor for forward movement and button for backward movement or vice 

versa but both sensor and button cannot be used simultaneously. The complete real time model structure 

with the train, its path, different stations along with the push buttons of respective stops.  

 

Figure 7. Train Movement, different stations and their respective push buttons 

When the Train is at rest a request arrives from the inside passenger. An input is received by the sensor 

and the train moves to the requested station (station 2). Next requested station is station 3 by the inside 

passenger. On receiving a sensor input the train further moves towards the station 3. The subsequently 

requested stations are station 4 and 5 by the inside passengers. Therefore, the train travels to the station 4 

from station 3 and then to the station 5 from station 4. Now the inside passenger requests for station 3, 

therefore, the train moves backward towards the station 3 from station 5 without stopping at Station 4. 

Next request arrives for station 4 through the push button but the train does not move forward towards the 

station 4 because it is going in the opposite direction and not at station 1 yet. The inside passengers now 

request for station 1, therefore, the train moves from station 3 to station 1. An input is received by the 

sensors for station 3 again. The train moves forward from station 1 to station 3 and then fulfils the initial 

station 4 requests.  

7 CONCLUSION  

We have introduced the DEMES methodology, and showed an implementation of a Railway control 

system using DEMES. We showed that DEVS is useful in simplifying the development of complex 

systems like Railway controller. The models are reusable and we were able to adapt a previously 

developed robot cart controller.  

 



Wainer and Boi-Ukeme 

REFERENCES   

Furfaro, A.; Nigro, L. 2008. Embedded Control Systems Design based on RT-DEVS and temporal 

analysis using UPPAAL, 2008 International Multiconference on Computer Science and Information 

Technology. Wisla, Poland. 

Hong, J., Song, H., Kim, T., and Park, K. 1997. A real-time discrete event system specification formalism 

for seamless real-time software development. Discrete Event Dynamic Systems, 7(4), pp.355-375. 

Niyonkuru, D. and G. Wainer. 2015. Discrete-Event Modelling and Simulation for Embedded Systems. 

Computing in Science & Engineering, 17(5), pp.52-63. 

Niyonkuru, D. and G. Wainer. 2015. “Towards a DEVS-Based Operating System”. SIGSIM PADS '15, 

101–112. London, UK. 

Niyonkuru, D., & Wainer, G. 2016. A kernel for embedded systems development and simulation using 

the boost library. In Proceedings of the Symposium on Theory of Modelling & Simulation. 

Washington, DC. 

Saadawi, H.; Wainer, G. 2009. “Verification of Real-Time DEVS Models”. SpringSim'09, San Diego, 

CA.  

Saadawi, H.; Wainer, G. 2010. "Rational Time-Advance DEVS (RTA-DEVS)”. Symposium on Theory of 

Modeling and Simulation, Orlando, FL.  

Sarjoughian, H., & Gholami, S. 2015. Action-level real-time DEVS modeling and simulation. Simulation, 

91 (10), pp. 869-887. 

Thompson, G. 2003. Defining an Alternative Future: The Birth of the Light Rail Movement in North 

America. Transportation Research Circular. Transportation Research Board (E–C058).  

Yu, Y., Wainer, G. 2007. “eCD++: an engine for executing DEVS models in embedded platforms”. In 

Proceedings of the 2007 Summer Computer Simulation Conference. San Diego, CA. 

Wainer, G. 2009. Discrete-event modeling and simulation: a practitioner's approach. CRC press. 

Wainer, G. 2015. DEVS modelling and simulation for development of embedded systems. In Proceedings 

of the 2015 Winter Simulation Conference. Huntington Beach, CA. 

Zeigler, B., Kim, T.G., & Prähofer, H. 2000. Theory of modeling and simulation. Academic Press. 

Zeigler, B. 1989. DEVS Representation of Dynamical Systems: Event-Based Intelligent Control. 

Proceedings of the IEEE (Volume: 77, Issue: 1). 

ACKNOWLEDGEMENTS 

This research has been partially funded by NSERC. We want to thank N. Kaushal and V. Joshi who 

participated in the development of the railway model and controller. 

https://ieeexplore.ieee.org/author/37273171200
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4731350
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4731350
http://pubsindex.trb.org/view.aspx?id=700149
http://pubsindex.trb.org/view.aspx?id=700149
https://en.wikipedia.org/wiki/Transportation_Research_Board


Wainer and Boi-Ukeme 

AUTHOR BIOGRAPHIES 

GABRIEL A. WAINER, FSCS, SMIEEE, received the M.Sc. 1993) at the University of Buenos Aires, 

Argentina, and the Ph.D. 1998, with highest honors) at UBA/Université d’Aix-Marseille III, France. In 

July 2000, he joined the Department of Systems and Computer Engineering at Carleton University 

(Ottawa, ON, Canada), where he is now Full Professor and Associate Chair for Graduate Studies. He has 

held visiting positions at the University of Arizona; LSIS (CNRS), Université Paul Cézanne, University 

of Nice, INRIA Sophia-Antipolis, Université de Bordeaux (France); UCM, UPC (Spain), University of 

Buenos Aires, National University of Rosario (Argentina) and others. He has published around 400 

research articles and five books in the field of Modeling and Simulation. He is one of the founders of the 

Symposium on Theory of Modeling and Simulation, SIMUTools and SimAUD. Prof. Wainer was Vice-

President Conferences and Vice-President Publications, and is a member of the Board of Directors of the 

SCS. Prof. Wainer is the Special Issues Editor of SIMULATION, member of the Editorial Board of IEEE 

Computing in Science and Engineering, Wireless Networks (Elsevier), Journal of Defense Modeling and 

Simulation (SCS. He is the head of the Advanced Real-Time Simulation lab, located at Carleton 

University's Centre for advanced Simulation and Visualization (V-Sim. He has been the recipient of 

various awards, including the IBM Eclipse Innovation Award, SCS Leadership Award, and various Best 

Paper awards. He has been awarded Carleton University's Research Achievement Award 2005, 2014), the 

First Bernard P. Zeigler DEVS Modeling and Simulation Award, the SCS Outstanding Professional 

Award 2011), Carleton University’s Mentorship Award 2013), the SCS Distinguished Professional 

Award 2013), and the SCS Distinguished Service Award 2015. He is a Fellow of SCS. 

JOSEPH BOI-UKEME is a Ph.D. student in the Department of Systems and Computer Engineering, 

Carleton University. He has a B.Eng. in Electrical and Electronics Engineering and a M. Eng. In 

Electronics and Telecommunications Engineering from the University of Benin, Nigeria. He holds an 

MSc in Petroleum Engineering from IFP, France. Previously he was a lecturer at the University of Benin, 

Nigeria, and a Field Engineer for Schlumberger.  


